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Low-frequency modes: spoke and breathing mode

 Spoke and ion-gradient-drift modes

e Axial modes and ionization effects (breathing mode)
— Predator-prey model (do not work)
— Axial resistive modes (important?)
— Electrothermal (ionization) instability. Likely important.
e Stationary solutions and their stability
— Stationary state diagram(s)
— Role of boundary conditions in breathing mode oscillations

e Coupling of axial (breathing mode) and azimuthal
(spoke) modes



What do we or do not understand about spoke?

 Azimuthal mode is fundamentally related to the ion-gradient-
drift mode and ionization*
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e jon-gradient-drift mode is a former “anti-drift mode” (Friedman, 1964,
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e Gradient-drift is a better name, or even lon-Gradient-Drift (IGD) to
distinguish it from the electron drift mode
Disclaimer: The views and opinions expressed thereof do not necessarily reflect 3



Gradient-drift instabilities (Simon-Hoh et al)
lon-gradient-drift mode (IGD) is a basis for “collisionless Simon-Hoh instability”
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Original classic Simon, Hoh, 1963 (Timofeev 1963) is collisional

Collisionless mode is a reactive instability due to the resonance of the IGD mode with degenerate (¥ = 0
mode shifted by EXB flow . As a result, the instability can be almost aperiodic

IGD mode can be driven unstable by dissipation, magnetic field gradients, sheath conductivity, ion flow
ionization, ...
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Additional complexities are due to the equilibrium constraints: various plasma parameters/gradients

are related to each other
F(L, Ly, o:,V,,.)=0



Axial (breathing modes ) oscillations are
understood better, but ...

* There are many models for the breathing mode claiming to
explain/predict it
— Predator-prey models (ion-neutral coupling)

— lon-neutral + electric field dynamics+electron conductivity
(no diffusion), Morozov, 1995

— ...+ electron diffusion and electron energy equation (axial
resistive modes

— ...electrothermal/temperature dependent ionization effects..
e Do we know the right combinations of these effects?

e Do we need to include any Kinetics effects? e.g. ion
temperature/viscosity?

e Complexity: Interaction of the above effects can result in very stiff
behavior—global constraints/profiles



Sonic and global constraints on the ion
acceleration and plasma parameters profiles

Approach:

 Find stationary axial profiles

e Analyse their stability

 Analyse the role of boundary
conditions on stability



lon acceleration/ionization/electron current model
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Jq 1s the discharge current density, B is the ionisation rate, n, is neutral density, v, is neutral
velocity (taken as constant), n; is ion density, v; is ion velocity.

Assumptions: S, u., T, are constant along the channel. Recombination on the anode is taken into

account.



Stationary solutions. Sonic transitions

Initial conditions are obtained by solving steady-state version of system:
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where c¢2 = T, /m; - the ion sound velocity, n, = J, — n;v;/v,, and J, = m/m;A.

Sonic point transition at v; = +c, requires a special treatment (Barral, Ahedo, Fruchtman, Fisch,
Dorf, Raitses, ...) Demanding that this point is regular

Fi(n,J,J,) = Fs(n,J, J,) = F3(n,J,J,) =0

This condition is reduced to a relatively simple equation
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Quadratic equation relating the plasma density,
discharge current and mass injection rate
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Stationary solution diagram
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Expanding near the critical point, the equation for the
regular values of the velocity gradient can be found
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In general: two density roots; each density root generates two values for the
velocity derivatives; However some velocity derivatives can be complex;
most of the lower density branch does not lead to stationary solution.
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Solution diagram in various zones

Zone 1 Zone 2 Zone 3

Positive velocity derivative is on upper branch;

A

In zone 1 there are no real roots for v;’, n’, ¢'.

In zone 2, only two roots exist for top branch of n
parabola. In zone 2a, there are no oscillations. In
__]d zone 2b single mode oscillations are observed.

In zone 3, maximum of four roots can exist. Multi-
Az mode oscillations are observed in this zone.




Velocity profile (as well as density,..) are uniquely built

Types of profiles in zone 3 Types of profiles in zone 2b
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The whole profiles are built from the sonic point: no freedom for boundary
conditions which are fully defined by these global (stiff) solution.

Then the stationary profiles are analyzed for stability; full time dependent
problem is solved starting from the stationary solution as an initial value.

Stable and unstable regions are identified

Oscillations occur also when the “wrong” boundary conditions are used for time

dependent problem




Character of oscillations is different:
Related to the nonlinear response to external driving?

Zone 2b
Single mode oscillations
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Self-organization: zonal flows, vortices and streamers
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Coupling of azimuthal and axial modes:

xIPe
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Anomalous current
100 ‘ | (associated with azimuthal modes)

Jellv

driven exclusively by axial modes
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Driving of the breathing mode oscillations

 Modulation of the discharge voltage of the cylindrical Hall thruster

Probe
locations
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e Oscillations of the ion current in the plume with an ion saturation probe

e |VDF Oscillations by time-resolving Laser-Induced Fluorescence (LIF)

* Probes to measure oscillations of plasma properties (plasma potential,

electron temperature, plasma density) near the channel exit
17



Effect of the driving on ion performance

Propellant utilization
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Modeling explained driving effect on plasma properties

1-D Model solved using BOUT++ * Phase difference between

e Linear mode
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Model: modulations reduce the phase, AY,
between oscillations of the ion density N; and
the ion velocity V; increasing the effective ion
flux, /;, from the thruster:

Ji~N;V; cos(Ay), 19



Spoke mitigation via coupling with the breathing mode

* Spoke observed in CHT operation without driving breathing oscillations

t=4348, u's t=446.5, i s t=458.3, u s t=4700,us

an

* Spoke mitigated in CHT at high modulations of breathing oscillations

t=2702.5 us t=27143, u s t=2726.0, us t=27378, us

If spoke is an azimuthally propagating mode driven by axial gradients (N;, T,),
axial gradients (profiles) are modified by driven breathing mode!



Thank youl!
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Axial-flow instability and large scale structures

Axial mode are also found in nonlinear 2D simulations, coexist with small
scales (lower hybrid modes)
Weakly growing structures, hard to saturate, large amplitude, slowly

moving, resemble non-monotonous structures in the electric field
(Vaudolon, Khiar, Mazouffre 2014)

Important for ionization (breathing) modes?
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Axial-flow instability and large scale structures

. Inherent instability of the current flow: Dissipative response of

= Vio R : :
the electron flow + ballistic (inertial) response of ions
—==E 2 Y Electron current:
i collisional and/or anomalous
1. .. ¢
2 —> >+ L= . ), =0, E
O N 7 — - e a,c
g I E*
D
LC[L) ﬁ,’ < 0 ﬁi < O -
> > + e¢p = const
= ;<0 |~ | >~ <0 | ed
O >0 L w >0y b=
ol | | m;Vjo
nv = const
_ Ting end
Koshkarov et al, Phys Plasmas 2017 n=- = -
Vio m;vijo

lon response is inertial:
in phase with potential



Resistive current flow instabilities

 No density gradient required

 Occur Iin the direction of the current flow

 Either along the stationary ExB flow or along
the ion flow

Fish, Litvak 2001

Chable, Rogier, 2005
Fernandez et al 2008
Koshkarov et al, 2017, 2018

In case of the are axial current (ion) flow is an important
Ingredient of breathing mode oscillations? Chable,
Rogier 2005
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Electron inertia selects the most unstable mode
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Linear instabilities
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